Syntheses of crown ether-esters with (benzyloxy)methyl side arms using SbPh₃ and BiPh₃ as templates¹

Yoichi Habata,* Fumio Fujishiro and Sadatoshi Akabori*

Department of Chemistry, Faculty of Science, Toho University, Funabashi, Chiba 274, Japan

New crown ether-esters 3a, 3b, 4a, 4b, 4c and 5a with side arms are synthesized by the treatment of (benzyloxy)methyl-substituted diols (1 and 2) with acid chlorides [malonyl chloride and diglycolyl chloride (2,2'-oxydiacetyl chloride)]. SbPh₃ and BiPh₃ are effective templates for the synthesis of 14crown-4 ether-esters with (benzyloxy)methyl side arms, and the template effect depends on the structures of both the diols and acid chlorides. Also, it was revealed that the key step in the template synthesis is the formation of a complex between 1 and MPh₃ (M = Sb and Bi) by IR and mass spectral studies. The order of complexing ability between 1 and MPh₃ is: 1 + BiPh₃ \gg 1 + SbPh₃ > 1 + AsPh₃. In particular, BiPh₃ can form stable 1:1 and 2:1 complexes with 1.

It is well known that template syntheses are some of the most useful methods for the synthesis of macrocyclic compounds such as crown ethers and supramolecules.² Ogawa et al. reported³ that triarylbismuthines were efficient dehydration reagents for the preparation of ester compounds such as the crown ether-esters by the reaction of a carboxylic acid or carboxylic acid anhydride with an aliphatic alcohol or polyethylene glycol in nonpolar solvents such as benzene. Also, Alcock et al.⁴ and Takahashi et al.⁵ reported that antimony(III) chloride (SbCl₃), which is unstable in air, formed stable 1:1 complexes with 12-crown-4, 15-crown-5 and 18-crown-6. These results have led us to use SbPh₃ as a template for the syntheses of crown ether-esters with side arms. SbPh₃ is a very convenient template, because (i) it is highly soluble in low polarity solvents such as benzene, (ii) it is stable in water and air, and (iii) it is easily recovered from the reaction mixture. Although a number of crown ethers having one or more side arms as additional binding sites have been extensively investigated,⁶ no example has been reported on the synthesis of crown ether-ester derivatives with side arms. It is expected that these crown etheresters may have specific selectivities for metal cations similar to crown ethers with side arms. Here, we report the synthesis of crown ether-esters with (benzyloxy)methyl side arms using MPh_3 (M = Sb and Bi) as the template.

Results and discussion

Syntheses of crown ether-esters with (benzyloxy)methyl side arms

(Benzyloxy)methyl-substituted 16-, 14- and 13-membered crown ether-esters were prepared by the treatment of diols 1 and 2⁷ with the corresponding acid chlorides (malonyl chloride and diglycolyl chloride) under high dilution conditions (see Experimental section). For example, when 1 was treated with malonyl chloride, pure monomer 3a and dimer 3b were obtained as hygroscopic oils in 35 and 21% yield, respectively. On the other hand, when diglycolyl chloride was used, monomer 4a, dimer 4b and trimer 4c were obtained as cyclization products. Using 2 as a diol gave only the monomer 5a. Structures of these cyclization compounds were confirmed by elemental analyses, ¹H and ¹³C NMR in CDCl₃ and EImass spectroscopy (20 eV). COSY and CHCORR (C-H Correlated 2D NMR) techniques were used for the assignment of the ¹H and ¹³C NMR spectra. All peaks in the ¹H and ¹³C NMR spectra were reasonably assigned. Although the molecular ion peaks of 3a, 3b, 4a and 5a in the EI-mass spectra were observed as $[M + H]^+$, those of 4b and 4c could not be

observed. We confirmed these structures by the fragment ion peaks arising from $([M - C_6H_5CH_2 - H]^+ \text{ at } 700 (44\%), [M - C_6H_5CH_2 - OCOCH_2O + H]^+ \text{ at } 628 (10\%) \text{ and } [M/2]^+ \text{ at } 396 (5\%) \text{ in } 4b \text{ and } [M - C_6H_5CH_2 - CH_2COO-CH_2CH_2OCH_2CCH_3(CH_2OCH_2C_6H_5)CH_2OCH_2CH_2O]^+ \text{ at } 774 (0.9\%), [M - C_6H_5CH_2 - M/3]^+ \text{ at } 701 (2\%) \text{ and } [M - M/3 - C_6H_5CH_2 - OCOCH_2O + H]^+ \text{ at } 628 (0.5\%) \text{ in } 4c.$

Template effect by MPh₃ for the syntheses of the crown ether-esters

The yield and recovery of MPh_3 (M = As, Sb and Bi) from the reaction of diols with acid chlorides are summarized in Table 1. As shown in Run 3, using SbPh₃ for the reaction of 1 with malonyl chloride increased the yield of monomer 3a and decreased that of dimer 3b when compared with Run 1. The recovery of SbPh3 was 86%. We also examined the effect of AsPh₃ and BiPh₃ as a template for the cyclization reaction, because As and Bi are also group XV metals. When AsPh₃ was used as the template (Run 2), the yields of 3a decreased and that of 3b remained the same as compared with Run 1. The recovery of AsPh₃ was quantitative. On the other hand, addition of one equivalent of BiPh₃ increased not only the yield of 3a but also that of 3b (Run 6). In this case, BiPh₃ could not be recovered because it decomposed under the reaction conditions. In order to investigate the effect on the structure of the acid chloride, diglycolyl chloride was used as the acid chloride. Runs 5-8 in Table 1 show the yield of the (benzyloxy)methyl substituted 16-crown-5 ether-ester 4a, the dimer 4b and the trimer 4c. A significant template effect by MPh₃ was not observed, although the yield of the dimer was slightly enhanced by using SbPh₃ (Run 6). Next, we examined the effect on the structure of the diol. The (benzyloxy)methyl-substituted tri(ethylene glycol)derivative 2 was treated with malonyl chloride (Runs 7 and 8). In this system, monomer 5a was predominantly obtained. A significant template effect was not observed, although the yield of 5a was slightly increased using SbPh₃. These results show that the effect of SbPh₃ and BiPh₃ as templates depends on the structures of both the diols and acid chlorides under the given reaction conditions.

Complexing ability between diol 1 and MPh₃

Recently, Rogers *et al.*⁸ reported the X-ray crystallography of complexes of ethylene glycols with $M(NO_3)_3$ (M = As, Sb and Bi). We believe that complex formation between the diol and MPh₃ is an important step in the cyclization reaction. In order to assess the complexing abilities of diol 1 with MPh₃ (M = As,

Table 1 Yield^{*a*} of crown ether-ester and recovery of MPh_3 (M = As, Sb and Bi)

				Yield (%)			
Run	Diol	Acid chloride	Template	Monomer	Dimer	Trimer	Recovery of MPh ₃ (%)
 				3a	3b	•••• ••••	
1	1	Malonyl chloride		35	21		
2	1	Malonyl chloride	AsPh ₃	25	21		> 99
3	1	Malonyl chloride	SbPh	40	15	_	86
4	1	Malonyl chloride	BiPh	40	44		b
		5	5	4 a	4b	4c	
5	1	Diglycolyl chloride	_	43	22	4	
6	1	Diglycolyl chloride	AsPh ₃	44	23	8	> 99
7	1	Diglycolyl chloride	SbPh	42	28	8	84
8	1	Diglycolyl chloride	BiPh	43	18	4	Ь
			5	5a			
9	2	Malonyl chloride	_	48		_	
 10	2	Malonyl chloride	SbPh ₃	54	—	_	78

^a Isolated yield. ^b BiPh₃ decomposed.

Sb and Bi), ¹H NMR titration studies in CDCl₃ solution were carried out by the addition of 1 to MPh₃ (Fig. 1). No chemical shift changes for the OH protons were observed for $1 + AsPh_3$, $1 + \text{SbPh}_3$ or $1 + \text{BiPh}_3$, although there were slight chemical shift changes between 1 and the $1 + MPh_3$ systems. Since we could not observe differences in the binding abilities using ¹H NMR spectral studies, we tried to estimate them by means of IR and EI-mass spectroscopy (20 eV). IR spectral data for the C-OH stretching band for $1, 1 + AsPh_3, 1 + SbPh_3$ and 1 +BiPh₃ are shown in Table 2. There are remarkable differences between 1 and the $1 + MPh_3$ (M = Sb and Bi) systems. The order of differences is as follows: $1 + BiPh_3(-15 \text{ cm}^{-1}) > 1 +$ $SbPh_3$ (-10 cm⁻¹) > 1 + AsPh_3 (±0 cm⁻¹). The same tendency was observed using EI-mass spectra. Table 3 shows the fragment ion peaks and intensities of MPh₃, Table 4 shows those of mixtures of $1 + MPh_3$ (1:MPh₃ = 1:1, M = As, Sb and Bi) and Table 5 shows the peaks and intensities of a mixture of malonyl chloride + BiPh₃. In the EI-mass spectral

Table 2 IR spectral data $(\nu/cm^{-1})^a$ of 1, 1 + AsPh₃, 1 + SbPh₃ and 1 + BiPh₃ systems

	v(C–OH)	Δcm^{-1}	
1	1065		
$1 + AsPh_3$	1065	0	
$1 + \text{SbPh}_3$	1055	- 10	
$1 + BiPh_3$	1050	-15	

^a Neat.

data of MPh₃, the fragment ion peaks and their intensities are compatible with the previously reported data.⁹ On the other hand, there were significant intensity changes in the fragment ion peaks between mixtures of $1 + AsPh_3$, $1 + SbPh_3$ and 1 +BiPh₃. In the mixture of $1 + AsPh_3$, the intensity of $[1 + H]^+$ was 100%, while those of $[1 + AsPh_2]^+$, $[1 + AsPh_2 - H]^+$ and $[1 + AsPh_2 - 2H]^+$ were very low (0.1–0.5%). Also, the intensities of $[1 + SbPh_2]^+$, $[1 + SbPh_2 - H]^+$ and [1 +

Table 3 Fragment ion peaks and intensities of MPh_3 (M = As, Sb or Bi)^a

Compound	MPh ₃ ⁺	MPh ₂ ⁺	MPh ⁺	M ⁺	
AsPh ₃ SbPh ₃ ^b BiPh	306 (31.7%) 352 (10.8%) 354 (7.9%)	229 (7.3%) 275 (14.9%) 277 (7.4%) 363 (4.5%)	152 (100.0%) 198 (100.0%) 200 (74.3%) 286 (100.0%)	121 (0.4%) 123 (0.3%) 209 (89 5%)	

^a Measured by the EI method (20 eV). ^b Natural abundances of ¹²¹Sb and ¹²³Sb are 57.25 and 42.75%, respectively (100:74.7).

Table 4 Fragment ion peaks and intensities of mixtures of 1 with MPh₃ (M = As, Sb or Bi)^a

Mixture	[1 + H] ⁺	$[1 + MPh_2]^+$	$[1 + MPh - H]^+$ or $[1 + MPh]^+$	$[1 + M - 2H]^+$ or $[1 + M]^+$	$[2 \times 1 + M - 2H]^+$
 $1 + AsPh_3^c$	299 (100.0%)	527 (0.1%)	449 (0.1%)	371 (0.5%)	
$1 + \text{SbPh}_3^{b,c}$	299 (100.0%)	573 (1.8%)	495 (5.5%)	417 (4.6%)	
-		575 (1.3%)	497 (4.4%)	419 (3.6%)	
$1 + \text{BiPh}_3^c$	299 (82.3%)	661 (26.1%)	584 (23.4%)	507 (100.0%)	803 (3.3%)

^{*a*} Measured by the EI method (20 eV). ^{*b*} Natural abundances of ¹²¹Sb and ¹²³Sb are 57.25 and 42.75%, respectively (100:74.7). ^{*c*} The intensity of each peak was normalized based on that of $[1 + H]^+$ for $1 + AsPh_3$ and $1 + SbPh_3$, and $[1 + M]^+$ for $1 + BiPh_3$ systems.

Table 5 Fragment ion peaks and intensities of a mixture of BiPh₃ with malonyl chloride^a

Mixture	Fragment ions, peaks and intensities						
Malonyl chloride + BiPh ₃	BiPh ₂ ⁺ 363 (4.3%) BiCl ₃ ⁺ 314 (0.8%) 316 (0.7%) 318 (0.2%) 320 (0.1%)	BiPh ⁺ 286 (12.8%) BiCl ₂ ⁺ 279 (3.7%) 281 (2.4%) 283 (0.4%)	Bi ⁺ 209 (95.1%) BiCl ⁺ 244 (85.9%) 246 (26.6%)	BiPhCl ₂ ⁺ 356 (0.6%) 358 (0.4%) 360 (0.1%)	BiPhCl ⁺ 321 (14.5%) 323 (4.7%)		

" Measured by the EI method (20 eV).

Fig. 1 ¹H NMR shift changes of OH protons of 1 ([MPh₃] = 0.05 mmol/0.65 cm³)

 $SbPh_2 - 2H]^+$ were about 1-4% in the mixture of 1 + SbPh₃, although the intensity of $[1 + H]^+$ was 100%, the same as in the $1 + AsPh_3$ system. Surprisingly, in the mixture of 1 +BiPh₃, the intensities of $[1 + H]^+$, $[1 + BiPh_2]^+$, $[1 + BiPh_2]^+$ $BiPh - H]^+$ and $[1 + Bi - 2H]^+$ were 82.3, 26.1, 23.4 and 100.0%, respectively, and $[2 \times 1 + Bi - 2H]^+$ arising from the 2:1 (1:BiPh₃) complex also appeared (3.3%) under these conditions. The results imply an order for the complexing abilities between 1 and MPh₃ of $1 + BiPh_3 \gg 1 + BiPh$ $SbPh_3 > 1 + AsPh_3$, and in particular that $BiPh_3$ can form stable 1:1 and 2:1 complexes with 1. The increase and decrease in the yields of 3a and 3b using SbPh₃ and BiPh₃ (Runs 3 and 4, Table 1) can be explained by the trend in the complexing abilities between 1 and $1 + MPh_3$ (M = Sb and Bi). That is, when SbPh₃ was used, the formation of a 1:1 complex between 1 and SbPh₃ enhanced the yield of monomer 3a and reduced that of dimer 3b. On the other hand, when BiPh, was used, the

formation of the 1:1 and 2:1 complexes enhanced the yield of both compounds. Therefore, it is reasonable to speculate that enhancement of the yields of 3a by SbPh₃ and that of 3a and 3b by BiPh₃ is due to the template effect as shown in Fig. 2. When AsPh₃ was used as a template for the treatment of 1 with acid chlorides, the yield of 3a (Run 2) decreased compared with the template-free conditions (Run 1), although there is no effect on the yield of 4a (Runs 5 and 6). The results may indicate that AsPh₃ inhibits monomer formation by 1 and malonyl chloride. In order to analyse the decomposition products of BiPh₃, the mass spectrum of the mixture of malonyl chloride + BiPh₃ was measured. As shown in Table 5, several ion peaks such as $BiCl_3^+$ and $BiPhCl_2^+$ arising from the Cl substituted compounds of BiPh₃ together with the fragment ion peaks arising from BiPh₃ were detected. However, the ion peaks arising from the malonyl chloride-bismuth compound were not detected at all. The experimental results show that (i) the decomposed products of BiPh3 are mixtures of the Cl substituted compounds of BiPh₃ and (ii) the formation of the complex of BiPh₃ with malonyl chloride can be ruled out in the cyclization mechanisms. The second suggestion strongly supports our postulated cyclization mechanisms.

In conclusion, we have demonstrated that SbPh₃ and BiPh₃ are effective templates for the syntheses of 14-crown-4 etheresters with (benzyloxy)methyl side arms and that the template effect depends on the structures of both diol and acid chloride. Also, we showed that the key step in the template synthesis is the formation of a complex between the diol and MPh₃ based on IR and mass spectral data.

Experimental

Mass spectra were obtained on a Hitachi M80 Mass spectrometer. ¹H and ¹³C NMR spectra were obtained on a Bruker AC 250 spectrometer with Me_4Si as the internal stand-

Fig. 2 Postulated cyclization mechanisms for 3a and 3b by the template effect

ard and J values are given in Hz. IR spectra were recorded with a JASCO FT/IR-230 spectrometer.

General procedure for the treatment of (benzyloxy)methyl substituted diols with acid chlorides

A solution of the diol (17 mmol) in benzene (100 cm³) and a solution of acid chloride (17 mmol) in benzene (100 cm³) were added dropwise over 5 h to refluxing benzene [500 cm³, containing MPh₃ (17 mmol) as appropriate] under a nitrogen atmosphere. After addition was complete, the mixture was heated under reflux for a further 24 h. The solvent was then removed under reduced pressure and the residual oil was purified by silica gel column chromatography (benzene–ethyl acetate). The first and the second fractions were the triphenylmetal and a mixture of the cyclization compounds, respectively. The second fraction was concentrated and the residual oil was separated and purified by gel-permeation column chromatography (Sephadex LH-20, ethanol as eluent). The pure monomer, dimer and trimer were obtained as hygroscopic oils.

13-(Benzyloxy)methyl-13-methyl-1,4,8,11-tetraoxacyclo-

tetradecane-5,7-dione 3a. Oil; $\delta_{\rm H}$ (CDCl₃) 7.30 (5 H, s), 4.48 (2 H, s), 4.27–4.24 (4 H, m), 3.64–3.61 (4 H, m), 3.40 (2 H, s), 3.34 (2 H, d, J 16.6), 3.30 (2 H, d, J 16.6), 3.30 (2 H, s) and 0.97 (3 H, s); $\delta_{\rm C}$ (CDCl₃) 165.9 (C-5, C-7, C=O), 138.6 (phenyl, bridgehead carbon), 128.1 (phenyl), 127.2 (phenyl), 127.1 (phenyl), 73.1 (PhCH₂), 73.6 (BzOCH₂), 72.2 (C-12, C-14), 68.3 (C-2, C-10, OCH₂CH₂OCO), 64.4 (C-3, C-9, OCH₂-CH₂OCO), 42.1 (C-6), 40.3 (C-13) and 17.6 (13-Me); *m*/*z* (20 eV) 367 ([M + H]⁺, 18%); $\nu_{\rm max}$ /cm⁻¹ 1750 and 1730 (C=O) (Found: C, 62.0; H, 7.25. Calc. for C₁₉H₂₆O₇: C, 62.28; H, 7.15%).

13,27-Bis[(benzyloxy)methyl]-13,27-dimethyl-1,4,8,11,15,-

18,22,25-octaoxacyclooctacosane-5,7,19,21-tetraone 3b. Oil; $\delta_{\rm H}$ 7.32 (10 H, s), 4.47 (4 H, s), 4.24 (8 H, t, *J* 4.6), 3.59 (8 H, t, *J* 4.6), 3.38 (4 H, s), 3.35 (4 H, s), 3.34 (4 H, s), 3.31 (4 H, s) and 0.95 (6 H, s); $\delta_{\rm C}$ 166.1 (C-5, C-7, C-19, C-21, C=O), 138.6

(phenyl, bridgehead carbon), 128.2 (phenyl), 127.2 (phenyl), 127.1 (phenyl), 73.0 (Ph CH_2), 72.8 (BzO CH_2), 73.3 (C-12, C-14, C-26, C-28), 68.7 (C-2, C-10, C-16, C-24, O CH_2CH_2 -OCO), 64.4 (C-3, C-9, C-17, C-23, O CH_2CH_2OCO), 41.2 (C-6, C-20), 40.8 (C-13, C-27) and 17.2 (13-Me, 27-Me); m/z (20 eV) 733 ([M + H]⁺, 18%); v_{max}/cm^{-1} 1760–1730 (C=O) (Found: C, 61.6; H, 7.2. Calc. for $C_{38}H_{52}O_{14}$ + 1/2H₂O: C, 61.53; H, 7.20%).

15-(Benzyloxy)methyl-15-methyl-1,4,7,10,13-pentaoxacyclohexadecane-5,9-dione 4a. Oil; $\delta_{\rm H}$ 7.31 (5 H, s), 4.48 (2 H, s), 4.35–4.31 (4 H, m), 4.23 (4 H, s), 3.66–3.63 (4 H, m), 3.39 (2 H, d, J 16.8), 3.36 (2 H, d, J 16.8), 3.31 (2 H, s) and 0.96 (3 H, s); $\delta_{\rm C}$ 169.4 (C-5, C-9, C=O), 138.8 (phenyl, bridgehead carbon), 128.3 (phenyl), 127.5 (phenyl), 127.4 (phenyl), 73.3 (PhCH₂), 73.1 (BzOCH₂), 74.2 (C-14, C-16), 69.0 (C-2, C-12, OCH₂CH₂OCO), 64.8 (C-3, C-11, OCH₂CH₂OCO), 68.0 (C-6, C-8), 40.9 (C-15) and 17.4 (15-Me); *m/z* (20 eV) 397 ([M + H]⁺, 17%) and 204 ([CH₂CH₂OCOCH₂OCCH₂COOCH₂-CH₂O]⁺, 100%); $\nu_{\rm max}/{\rm cm^{-1}}$ 1750 and 1738 (C=O) (Found: C, 59.9; H, 7.2. Calc. for C₂₀H₂₈O₈ + 1/4H₂O: C, 59.76; H, 7.23%).

15,31-Bis[(benzyloxy)methyl]-15,31-dimethyl-1,4,7,10,13,-17,20,23,26,29-decaoxacyclodotriacontane-5,9,21,25-tetraone **4b.** Oil; $\delta_{\rm H}$ 7.31 (10 H, s), 4.47 (4 H, s), 4.27 (8 H, t, J 4.6), 4.24 (8 H, s), 3.60 (8 H, t, J 4.6), 3.33 (8 H, s), 3.31 (4 H, s) and 0.94 (6 H, s); $\delta_{\rm C}$ 169.7 (C-5, C-9, C-21, C-25, C=O), 138.8 (phenyl, bridgehead carbon), 128.3 (phenyl), 127.4 (phenyl), 127.3 (phenyl), 73.3 (PhCH₂), 73.0 (BzOCH₂), 73.5 (C-14, C-16, C-30, C-32), 69.0 (C-2, C-12, C-18, C-28, OCH₂-CH2OCO), 64.0 (C-3, C-11, C-19, C-27, OCH2CH2OCO), 68.0 (C-6, C-8, C-22, C-24), 41.0 (C-15, C-31) and 17.4 (15-Me, 31-Me); m/z (20 eV) 700 ([M - C₆H₅CH₂ - H]⁺, 44%), 628 $([M - C_6H_5CH_2 - OCOCH_2O + H]^+, 10\%), 396 ([M/2]^+,$ $([M = C_{6}^{115}CH_{2}^{12} + COCH_{2}^{12}CH_{2}^{12}COOCH_{2}^{12}CH_{2}^{1}]^{+}, 32\%)$ and ([M/2 - COCH_{2}^{12}OCH_{2}^{12}COOCH_{2}^{12}CH_{2}^{11}]^{+}, 32\%) and ([M/2 - COCH_{2}^{12}CH_{2}^{12}COOCH_{2}^{12}CH 204 ([$CH_2CH_2OCOCH_2OCH_2COOCH_2CH_2O$]⁺, 100%); v_{max}/cm^{-1} 1755–1735 (C=O) (Found: C, 60.5; H, 7.1. Calc. for C40H56O16: C, 60.59; H, 7.12%).

15,31,47-Tris[(benzyloxy)methyl]-15,31,47-trimethyl-1,4,7,-10,13,17,20,23,26,29,33,36,39,42,45-pentadecaoxacyclooctatetracontane-5,9,21,25,37,41-hexaone 4c. Oil; $\delta_{\rm H}$ 7.31 (15 H, s), 4.47 (6 H, s), 4.26 (12 H, t, J 4.6), 4.22 (12 H, s), 3.59 (12 H, t, J 4.6), 3.33 (12 H, s), 3.30 (6 H, s) and 0.94 (9 H, s); $\delta_{\rm C}$ 169.7 (C-5, C-9, C-21, C-25, C-37, C-41, C=O), 138.8 (phenyl, bridgehead carbon), 128.3 (phenyl), 127.4 (phenyl), 127.3 (phenyl), 73.3 (PhCH₂), 72.9 (BzOCH₂), 73.6 (C-14, C-16, C-30, C-32, C-46, C-48), 69.1 (C-2, C-12, C-18, C-28, C-34, C-44, OCH₂CH₂OCO), 63.9 (C-3, C-11, C-19, C-27, C-35, C-43, OCH2CH2OCO), 68.0 (C-6, C-8, C-22, C-24, C-38, C-40), 41.0 (C-15, C-31, C-47) and 17.4 (15-Me, 31-Me, 47-Me); m/z (20 eV) ${[M - C_6H_5CH_2 - CH_2COOCH_2CH_2OCH_2CCH_3 -$ 774 $(CH_2OCH_2C_6H_5)CH_2OCH_2CH_2O]^+, 0.9\%$, 701 ([M - C₆-OCH₂CH₂]⁺, 30%), 204 ([CH₂CH₂OCOCH₂OCH₂COO-CH₂CH₂O]⁺, 32%) and 91 ([C₆H₅CH₂]⁺, 100%); ν_{max}/cm^{-1} 1755-1735 (C=O) (Found: C, 61.0; H, 7.2. Calc. for C₆₀H₈₄O₂₄: C, 60.59; H, 7.12%)

5-(Benzyloxy)methyl-1,4,7,10-tetraoxacyclotridecane-11,13dione 5a. Oil; $\delta_{\rm H}$ 7.34–7.27 (5 H, m), 4.52 (2 H, s), 4.42–4.18 (4 H, m), 3.94–3.61 (7 H, m), 3.52–3.24 (2 H, m) and 3.40 (2 H, d, J 4.9); $\delta_{\rm C}$ 166.1 (C-11, C-13, C=O), 137.9 (phenyl, bridgehead carbon), 128.4 (phenyl), 127.7 (phenyl), 127.6 (phenyl), 73.4 (PhCH₂), 69.9 (BzOCH₂), 71.0 (C-6), 68.8 and 68.6 (C-3, C-8, OCH₂CH₂OCO), 64.9 and 64.0 (C-2, C-9, OCH₂CH₂OCO), 42.4 (C-12) and 78.1 (C-5); *m/z* (20 eV) 339 (M⁺ + H, 41%); $\nu_{\rm max}/{\rm cm^{-1}}$ 1760–1740 (C=O) (Found: C, 60.3; H, 6.8. Calc. for C₁₇H₂₂O₇: C, 60.35; H, 6.55%).

Titration experiments

Titration experiments were carried out at 298 K upon the addition of 1.0–10.0 equiv. of 1 to the MPh₃ solution. Conditions: $[1] = 0.05 \text{ mmol } 10 \text{ mm}^{-3} \text{ in } \text{CDCl}_3$; $[\text{MPh}_3] = 0.05 \text{ mmol } 0.65 \text{ cm}^{-3} \text{ in } \text{CDCl}_3$.

Preparation of samples for IR and mass spectral studies

Samples for the IR and mass spectral studies were prepared as follows: 0.1 mmol of MPh₃ (M = As, Sb and Bi) was added to 0.1 mmol of 1 in 2 cm³ of CHCl₃. After the mixture was concentrated under reduced pressure, the residual oil was dried

with an Abderhalden's dryer (0.1 Torr, 100 °C) for 1 h. The residual oil was used directly for the IR and mass spectral studies. Also, for sample of malonyl chloride with BiPh₃, 0.1 mmol of BiPh₃ was added to 0.1 mmol of malonyl chloride in a mixture of benzene (1 cm³) and CHCl₃ (1 cm³). After removal of the solvent, the residual solid was used directly for the mass spectral study.

Acknowledgements

This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan (No. 05854066). The authors wish to thank Professor J. S. Bradshaw for helpful discussions.

References

- 1 Preliminary report: Y. Habata, F. Fujishiro and S. Akabori, J. Chem. Soc., Chem. Commun., 1994, 2217.
- 2 T. J. McMurry, K. N. Raymond and P. H. Smith, *Science*, 1989, 244, 938; R. Hoss and F. Vögtle, *Angew. Chem.*, *Int. Ed. Engl.*, 1994, 33, 375 and references cited therein.
- 3 T. Ogawa, T. Hikasa, T. Ikegami, N. Ono and H. Suzuki, Chem. Lett., 1993, 815; T. Ogawa, A. Yoshikawa and N. Ono, 67th CSJ Annual meeting, abstract II, 1994, p. 1007.
- 4 N. W. Alcock, M. Ravindran and G. R. Willey, Acta Crystallogr., Sect. B, 1993, 49, 507.
- 5 M. Takahashi, T. Kitazawa and M. Takeda, J. Chem. Soc., Chem. Commun., 1993, 1779.
- 6 J. S. Bradshaw, G. B. Maas, R. M. Izatt and J. M. Christensen, *Chem. Rev.*, 1979, **79**, 37; G. W. Gokel and S. H. Korzeniowski, *Macrocyclic Polyether Syntheses*, Springer-Verlag, Berlin, 1982, ch. 5, p. 221.
- 7 B. P. Czech, D. A. Babb and R. A. Bartsch, Org. Prep. and Proced. Int., 1983, 15, 29.
- 8 R. D. Rogers, A. H. Bond and S. Agunaga, J. Am. Chem. Soc., 1992, 114, 2960; R. D. Rogers, A. H. Bond, S. Agunaga and A. Reyes, J. Am. Chem. Soc., 1992, 114, 2967.
- 9 F. W. McLafferty and D. B. Stauffer, *The Wiley/NBS Registry of Mass Spectral Data*, Wiley, New York, 1987, vol. 3, p. 2965; vol. 4, p. 3888; vol. 5, p. 5026.

Paper 5/04209G Received 30th June 1995 Accepted 16th October 1995